
Discop: Provably Secure Steganography in Practice
Based on “Distribution Copies”

Jinyang Ding∗ Kejiang Chen∗B Yaofei Wang+ Na Zhao∗ Weiming Zhang∗B Nenghai Yu∗
∗University of Science and Technology of China +Hefei University of Technology

Abstract—Steganography is the act of disguising the transmis-
sion of secret information as seemingly innocent. Although prov-
ably secure steganography has been proposed for decades, it has
not been mainstream in this field because its strict requirements
(such as a perfect sampler and an explicit data distribution)
are challenging to satisfy in traditional data environments. The
popularity of deep generative models is gradually increasing
and can provide an excellent opportunity to solve this problem.
Several methods attempting to achieve provably secure steganog-
raphy based on deep generative models have been proposed in
recent years. However, they cannot achieve the expected security
in practice due to unrealistic conditions, such as the balanced
grouping of discrete elements and a perfect match between the
message and channel distributions. In this paper, we propose a
new provably secure steganography method in practice named
Discop, which constructs several “distribution copies” during the
generation process. At each time step of generation, the message
determines from which “distribution copy” to sample. As long as
the receiver agrees on some shared information with the sender,
he can extract the message without error. To further improve
the embedding rate, we recursively construct more “distribution
copies” by creating Huffman trees. We prove that Discop can
strictly maintain the original distribution so that the adversary
cannot perform better than random guessing. Moreover, we
conduct experiments on multiple generation tasks for diverse
digital media, and the results show that Discop’s security and
efficiency outperform those of previous methods.

I. INTRODUCTION

The past few decades have witnessed massive surveillance
and censorship mechanisms deployed by totalitarian states to
prevent citizens from accessing or publishing selected types
of information on the Internet [1]–[3]. In response, encrypted
communication systems have proliferated, designed to fend
off intricate, even state-level censors. While these systems
safeguard the confidentiality of plaintext messages, the data
transmitted by them can be readily recognized as encrypted
traffic, thus attracting the attention of censors. For example,
encryption-based censorship circumvention techniques such as
Tor [4] can be actively detected by increasingly sophisticated
techniques [5]–[8] and blocked.

To cope with excessive censorship, significant efforts have
been devoted to making communications look innocuous dur-
ing the last few years. Among these, the most representative
methods refer to information hiding technology that disguises
the covert transmission of sensitive data as innocuous com-
munication. One of the latest advances in this area is to

B Kejiang Chen and Weiming Zhang are the corresponding authors.

“tunnel” secret messages in the data produced by commu-
nication applications or protocol implementations [9]–[12].
For instance, Protozoa [9] leveraged WebRTC video calls to
create covert channels, where the encrypted video streams are
replaced with the sensitive message. Another similar work,
Balboa [10], replaced audio streams or web browsing traffic
with the sensitive message. However, they rely heavily on the
condition that censors can only monitor encrypted data [10],
[11]. These replacement-based covert channels can be easily
detected if the censor has access to plaintext data, such as
controlling the WebRTC gateway that can decrypt and validate
incoming media streams. Meanwhile, there is no guarantee
that these channels are sustainable. Concretely, censors can
systematically compromise these tools by selectively reducing
the quality of encrypted channels or even blocking the delivery
of encrypted traffic for which they do not have a suitable
trapdoor.

To circumvent extreme censorship, steganography has been
introduced into covert channels [11], [13]. Steganography is
the technique that embeds secret messages in objects that
closely mimic real, mundane-appearing communications so
that such communications are impossible to be repressed by
censors. The most familiar steganography method is least
significant bit (LSB) replacement, where the sender needs an
image as the cover-image, and the secret message is converted
to a bitstream that replaces the LSBs of the pixel values
in the cover image to obtain the stego-image. Although the
visualizations of the cover-image and stego-image are similar,
it is easy to detect LSB replacement from the statistical
perspective [14]. To improve the covertness, several attempts
have been made to minimize the modification number based
on matrix encoding [15]–[17]. Considering that modifications
on different regions have different impacts, researchers have
shifted their focus towards adaptive steganography, which
aims to minimize the distortion caused by embedding mes-
sages [18], [19]. However, these methods can be detected
by steganalyzers [20], [21]. In recent years, deep learning-
based methods for data hiding in images have been proposed,
which directly utilize neural networks for message embedding
and extraction, such as HiDDeN [22], SteganoGAN [23], and
DeepMIH [24]. Even though involving adversarial training,
they are still easily detected [24]–[26].

a) Classical provably secure steganography: Research
on provably secure steganography has been carried out since
two decades ago. Cachin [27] first modeled steganographic

security by DKL (Pc∥Ps), the Kullback-Leibler divergence
between the cover distribution Pc and the stego distribution Ps.
Hopper et al. [28] modeled steganographic security in terms
of computational complexity and proposed a provably secure
steganography method based on rejection sampling with poor
embedding rate and excessive time consumption. Making use
of the duality of steganography and source coding, Le [29]
proposed a method based on arithmetic coding, which has bet-
ter efficiency. However, the stringent conditions they require,
such as the channel oracle and the explicit data distribution,
are challenging to satisfy in the traditional environment (before
the popularity of deep generative models).

b) Deep generative models and their feasibility: In the
past few years, there has been a surge of deep generative
models, which can approximate complex non-trivial data
distributions and synthesize realistic data. Moreover, their
popularity is gradually increasing, providing great scenarios
and techniques for efficient, provably secure steganography in
practice.

c) Efficient Attempts to Provably Secure Steganography:
Thanks to deep generative models, there have been several
attempts to achieve provably secure steganography in prac-
tice, such as arithmetic coding-based methods [30]–[33] and
ADG [34]. However, these previous methods, in practice,
would almost inevitably modify the original data distribution
since the conditions they require are unrealistic, such as
the balanced grouping of discrete elements and a perfect
match between the message and channel distributions. They
cannot achieve expected security because the adversary always
has a non-negligible advantage in distinguishing the cover
distribution Pc and the stego distribution Ps.

d) Our method: To address this problem, we propose
a novel, efficient, provably secure steganography method in
practice named Discop. Our insight is that during generation,
we can construct multiple copies (i.e., interval assignment
schemes) of a probability distribution predicted by the gener-
ative model, called “distribution copies”. Concretely, we first
assign each candidate token an interval of length equal to
its probability within [0, 1); then, we construct “distribution
copies” by rotating all intervals by certain displacements. With
these “distribution copies”, we can express information by
deciding from which “distribution copy” to sample. As long
as the receiver agrees on some shared information with the
sender, such as the PRNG, the seed, and the generative model,
he can reconstruct the “distribution copies” and then extracts
the message by determining from which “distribution copy”
the current token was sampled. Since the probability of each
token in different “distribution copies” is equal, the proposed
scheme strictly maintains the original distribution. Thus Ps

is strictly equal to Pc. A steganalyzer cannot perform better
than random guessing. To further improve the embedding
rate, we decompose the multivariate distribution into multiple
bivariate distributions through a Huffman tree and construct
“distribution copies” for each bivariate distribution recursively.
In this way, more “distribution copies” are constructed.

e) Deployments: Theoretically, Discop can be deployed
on any explicit generative model that can yield probability
distributions. To demonstrate Discop’s support for diverse gen-
eration tasks (or media), we deploy Discop on three generation
tasks, including text generation, image completion, and text-
to-speech.

f) Evaluation axes: We evaluate the performance of
Discop on different axes inspired by the desired requirements:
1) the security measured by the average and maximum value
of the KL divergence; 2) the time efficiency measured by
the average time to embed one bit; 3) the capacity efficiency
measured by the utilization of entropy, which is a new metric
proposed by us and calculated by dividing the total capacity
by its theoretical limit (i.e., the total entropy).

g) Contributions: The main contributions of this paper
can be summarized as follows:

• Analysis of the problems of existing attempts. We
review the existing steganography methods that attempt
to achieve provable security in practice and analyze the
problems preventing them from the expected security.

• A novel steganography method. We elaborate a novel
steganography method based on “distribution copies” that
share identical distribution. Furthermore, we theoretically
prove its security.

• Strategy to improve the embedding rate. We further
propose Discop, which improves the embedding rate by
recursively constructing more “distribution copies”.

• Benchmarking and comparison. We choose three typ-
ical generation tasks to deploy Discop and show that it
outperforms the existing methods in terms of security and
efficiency.

The source code of our implementations of Discop can be
found at https://github.com/comydream/Discop.

II. BACKGROUND AND RELATED WORK

A. Steganography System

Steganography is usually illustrated by Simmons’ “Prison-
ers’ Problem” [35]: Alice and Bob (steganographers) are in
jail, trying to hatch an escape plan. The only way they can
communicate with each other is carefully censored by the
warden Eve (steganalyzer). Once Eve detects any “unusual”
such as illegal words, encrypted messages, or abnormal codes,
she will block their plan and throw them into high-security
solitary confinement. Therefore, they must find some way to
embed the secret message into an “innocent-looking” cover-
object to obtain a stego-object.

Formally, a steganography system (stegosystem) ΣD with
the channel distribution D (alias of Pc) is a triple of proba-
bilistic algorithms, ΣD = (KeyGenD,EncodeD,DecodeD).

• KeyGenD(1
λ) takes arbitrary input with length λ and

generates a shared key K ∈ {0, 1}k with length k, which
will be used in the other two algorithms.

• EncodeD(K,m,H) takes as input a shared key K,
a message (i.e., the hiddentext) m ∈ {0, 1}∗, and a

https://github.com/comydream/Discop

channel history H. It returns the stego, which is a symbol
sequence s = s1 ∥s2∥ . . . ∥sl with length l.

• DecodeD(K, s,H) takes as input a shared key K, a
stego s and a channel history H, and returns the message
extracted from s.

Notably, like cryptography, steganography needs to satisfy
Kerckhoffs’s principle [36] that Eve knows any information
other than the key.

B. Definition of Steganographic Security

There are two common definitions of steganographic secu-
rity. One is based on hypothesis testing within the framework
of information theory [27] and the other is based on compu-
tational complexity theory [28], [37].

Cachin [27] first modeled steganographic security from the
perspective of information theory, where given an object x,
the security of a stegosystem can be quantified by the relative
entropy (a.k.a. Kullback-Leibler divergence) between the cover
distribution Pc and the stego distribution Ps,

DKL (Pc∥Ps) =
∑
x∈C

Pc(x) log
Pc(x)

Ps(x)
,

which typically measures how different the two distributions
are. When DKL (Pc∥Ps) = 0, the stegosystem is considered
to be perfectly secure. In this case, Pc is identical to Ps so that
the steganalyzer cannot perform better than random guessing.

Hopper et al. [28] and Katzenbeisser and Petitcolas [37]
independently proposed the complexity-theoretic definition of
steganographic security, which is established by means of a
probabilistic game that distinguishes the outputs of the oracle
OD and EncodeD. The stegosystem is called secure against
chosen hiddentext attacks if for all probabilistic polynomial
time (PPT) adversaries AD, it holds that∣∣∣Pr [AEncodeD(K,·,·)

D = 1
]
− Pr

[
AOD(·,·)

D = 1
]∣∣∣ < negl(λ),

where OD(·, ·) is an oracle that can randomly sample from
the data distribution D.

C. Classical Provably Secure Steganographic Construction

Since the definitions of steganographic security were pro-
posed, several steganography methods were constructed, which
can be divided into two categories: rejection sampling-based
and arithmetic coding-based methods.

1) Rejection sampling-based methods: Assuming that there
was a random sampling oracle (sampler) OD and a perfectly
unbiased function f over D shared by the communication
parties, Hopper et al. [28] proposed a provably secure stegano-
graphic construction based on rejection sampling. One en-
crypted message bit mi at a time, the sender uses rejection
sampling to find a symbol si that satisfies f (si) = mi. The
receiver, on the other hand, simply computes mi = f (si)
for all i and concatenates them together to obtain the whole
encrypted message. Von Ahn and Hopper [38] proposed
public-key steganography with rejection sampling. Backes and
Cachin [39] extended public-key steganography to defend

against active attacks. The security of these constructions
depends on the fact that rejection sampling does not destroy
the channel distribution when each encrypted message bit
obeys the uniform distribution U {0, 1} and f is perfectly
unbiased. However, the rejection sampling-based methods
suffer the following limitations in practice: 1) the expectation
of time consumption grows exponentially with message length
to be embedded per time step; 2) these rejection sampling
algorithms fail when the distribution has very low minimum
entropy. Moreover, there was a lack of an oracle that could
sample objects strictly according to channel distribution in the
traditional data environment.

2) Arithmetic coding-based method: Le [29] first proposed
a steganographic construction based on arithmetic coding
(AC), which utilizes the duality of steganography and source
coding (i.e., data compression) [40]. The embedding and
extraction algorithms of steganography correspond to the
decompression and compression algorithms of source cod-
ing, respectively. The embedding algorithm decompresses the
encrypted message into stego, and the extraction algorithm
compresses the stego into the encrypted message. If the data
compression scheme is perfect, the security of this construction
can be reduced to that of the encryption. It has a higher
capacity and better efficiency than the rejection sampling-
based methods. However, in addition to the requirement of
encrypting the message in advance, it also relies on a more
stringent condition: explicit data distribution.

To summarize, rejection sampling-based methods require
a random sampling oracle, while AC-based methods require
even explicit data distribution. These conditions are chal-
lenging to satisfy in the traditional data environment (before
the popularity of deep generative models) because, at that
time, digital data were created by sensors or humans, whose
generation processes were too complex to model.

D. Deep Generative Models and Their Feasibility

Deep learning has made great achievements in the past
decade. Deep generative models, such as variational autoen-
coders (VAEs) [41], [42], generative adversarial networks
(GANs) [43]–[46], and auto-regressive models [45], [47]–
[49], have emerged and prospered. They are neural networks
trained on a large amount of data and can approximate the
complex non-trivial probability distribution of various types of
data [43], [50], providing an excellent opportunity to provably
secure steganography.

GANs and VAEs are implicit generative models that aim
to build generators whose distribution is close to the real
distribution of training data,

x = Gθ(z), z ∼ p(z).

That is, a noise vector z is first sampled from a prior
distribution p(z), then z is transformed by a neural network
Gθ and finally outputs the sample x. In the rejection sampling-
based methods, we can use the generator of a GAN or VAE
as a sampler for generating stego-objects that obey the data
distribution.

Auto-regressive generative models, in contrast, are explicit
generative models. They use the chain rule of conditional prob-
ability distribution to model the joint probability distribution
of the object x,

p (x) =

T∏
t=0

p (xt | x0, . . . , xt−1) =

T∏
t=0

p (xt | x<t) ,

where xt is the basic unit of x, like a pixel in an image, a token
in a piece of text. The explicit distribution of the generated
data makes efficient methods such as the AC-based method
possible in practice.

The remaining problem is whether the generated data are
suitable for steganography. The essence of steganography
is to disguise steganographic behavior as normal behavior.
Deep generative models can synthesize photo-realistic high-
resolution images, luxuriant original art [44], [46], [51], [52],
and articles that seem written by humans [45], [47], [48].
Currently, the generated data are widespread on the Internet.
Furthermore, their popularity is gradually increasing. Accord-
ing to Gartner’s recent research report [53], generative AI will
account for 10% of all data produced by 2025. Therefore,
sharing generated data can be seen as a normal behavior
without raising suspicion.

E. Efficient Attempts to Provably Secure Steganography

Benefiting from the explicit generative models that can
predict probability distributions of data, researchers have pro-
posed several efficient attempts to achieve provably secure
steganography in practice. These methods were dedicated to
designing message embedding algorithms indistinguishable
from the normal generation process, i.e., random sampling.

1) AC-based methods: Following Le’s work [29], re-
searchers have introduced deep explicit generative models
to the AC-based method to make it practical, producing a
series of works in recent years. We can divide them into two
categories: basic AC-based methods and Meteor.

a) Basic AC-based methods: Yang et al. [30] deployed
the AC-based method on the image generation task. This
was the first study to apply a deep generative model to
the field of provably secure steganography. Specifically, they
repeatedly use an auto-regressive generative model to predict
the probability distribution of the next pixel and decompress
the current message fragment into a pixel using arithmetic
coding. Chen et al. [31] and Ziegler et al. [32] extended
the method to the text-to-speech and text generation tasks,
respectively.

b) Problems of basic AC-based methods: Basic AC-
based methods construct a reversible mapping between stego
and message. Since the probability of a message always has the
form of 2−l, where l ∈ N, the probability of the corresponding
stego has the same form. However, a cover distribution, which
the model predicts, is almost impossible to match the stego
distribution perfectly. Thus, the embedding algorithm needs to
tune the probability of each possible cover to fit the form of
2−l, introducing a distortion. To reduce the distortion, one can
lengthen the message simply by padding so that the probability

of each symbol sequence becomes smaller and closer to a 2−l.
The distortion tends to zero as the message length approaches
infinity, which is obviously impractical. Even then, the KL
divergence is a negligible function with respect to the message
length, not the length of the encryption key (which is the
security parameter), and cannot achieve the expected security.

c) Meteor: Kaptchuk et al. [33] proposed Meteor, which
addressed the problems basic AC-based methods suffer. It
made two modifications to AC-based methods: 1) not to
narrow the interval successively; 2) prevented the randomness
reuse problem by re-encrypting the message each time it
was used for sampling. They deployed Meteor on the text
generation task.

d) Problems of Meteor: Meteor has a lower capacity
than the basic AC-based methods. The reason is that the
basic AC-based methods narrow the interval successively, with
the generated symbol at each time step fully contributing to
message embedding, while Meteor considers each generated
symbol separately and cannot fully utilize the entropy.

e) Common implementation problems of AC-based meth-
ods: In their code implementations1,2, things got worse. On
each token sampled, the original distribution goes through
“cutoff-rescale-round-remove-add” before it becomes the ac-
tual distribution for steganography, severely destroying the
original distribution.

2) Grouping-based method: The basic idea of this method
is, at each time step, to first group all tokens evenly according
to their probabilities and then randomly sample a token
from the group with the index corresponding to the current
encrypted message fragment.

a) ADG: Zhang et al. [34] proposed a steganography
method based on adaptive dynamic grouping (ADG). At
each time step, they dynamically obtained the conditional
probability distribution of all tokens in the vocabulary, grouped
them into 2r groups with approximately the same probability
sum, and numbered them 0, 1, . . . , 2r − 1. All tokens in each
group represented the same message bits of length r. Then,
they read r bits from the message to be embedded and
converted them to a decimal number in {0, 1, . . . , 2r − 1}, and
performed random sampling from the normalized distribution
of its corresponding group to obtain the next token. They
assumed that the message bits followed a uniform distribution.
Since all groups had approximately the same probability sum,
the probability of each token obtained by ADG sampling is
close to that obtained by random sampling.

b) Problems of ADG: Theoretically, ADG can achieve
perfect security if and only if the grouping is perfectly
balanced. However, the problem is that since the probabilities
are discrete, the requirement is almost impossible to satisfy. In
most cases, the actual distribution used to embed the message
is a modified distribution, which is different from the original
distribution.

1https://github.com/harvardnlp/NeuralSteganography/blob/master/arithmetic.py
2https://gist.github.com/tusharjois/ec8603b711ff61e09167d8fef37c9b86

https://github.com/harvardnlp/NeuralSteganography/blob/master/arithmetic.py
https://gist.github.com/tusharjois/ec8603b711ff61e09167d8fef37c9b86

To facilitate understanding, we visualize the distortions
introduced by the AC-based methods and ADG by giving toy
examples in Appendix E.

III. DISCOP METHODOLOGY

As analyzed above, previous attempts to achieve provably
secure steganography in practice [30], [31], [33], [34] in-
troduced minor damage to the original probability distribu-
tion while embedding the message. They cannot achieve the
expected security because the adversary always has a non-
negligible advantage in distinguishing the cover distributions
Pc and the stego distribution Ps. To address this problem, in
this section, we present a new steganography method named
Discop, which can embed the message without destroying the
original probability distribution.

A. Steganography Method Based on “Distribution Copies”

We take the text generation task as an example to describe
the proposed method. Text generation leverages computational
linguistics and artificial intelligence knowledge to automati-
cally generate text that looks like human-written text. Auto-
regressive language models, such as GPT series models [45],
[47], [48], are the most representative generative models in this
area, which can predict P(t) = Pr [xt | x<t], the probability
distribution of the next token given previous context x<t.

With the predicted distribution, a strategy called random
sampling is applied. A whole process of text generation with
random sampling is usually implemented as follows. First, a
pseudo-random number generator (PRNG) is used to yield a
series of pseudo-random numbers r =

{
r(0), r(1), . . .

}
, which

follow the uniform distribution on [0, 1), i.e., r(t) ∼ U [0, 1).
At each time step t, the generative model M predicts P(t),
and each token in the vocabulary V is assigned a left-closed
and right-open interval in [0, 1) according to P(t). Then we
consume a pseudo-random number r(t) and select the token
corresponding to the interval that r(t) falls into as the next
token xt, and append it to the context. This process is repeated
until the termination condition is reached (e.g., the length of
the generated token sequence reaches the preset maximum
length).

Our insight is that during generation, we can construct
multiple copies (i.e., interval assignment schemes) of the
probability distribution predicted by the generative model,
called “distribution copies”, and use the index of “distribution
copy” to express information. For example, suppose that there
are only two tokens, “a” and “b” with probabilities of 0.4 and
0.6. We can assign [0, 0.4) and [0.4, 1.0) to “a” and “b”, or
assign [0.6, 1) and [0, 0.6) to “a” and “b”. As you can see, the
probability of each token is the same in several “distribution
copies”, meaning that the distribution of these “distribution
copies” is identical. In this way, the sender can create several
“distribution copies” and decide from which one to sample
a token depending on the message. As long as the sender
and receiver are under the same settings, including PRNG,
seed, generative model, and context, they can synchronize all
their states, where the seed is the number (or vector) used

to initialize the PRNG and can be regarded as part of the
symmetric key. Correspondingly, the receiver can extract the
message by determining from which “distribution copy” the
token was sampled. Notably, the existing methods use token
indexes or group indexes to express information, requiring
tuning the original distribution to fit the message distribu-
tion. Instead, our method uses “distribution copy” indexes
to express information, which does not destroy the original
distribution. This is the essential difference between Discop
and existing methods.

There are many ways to create “distribution copies”. We
employ a simple implementation: rotate all intervals to the
left by a certain step size, i.e., subtract this step size from all
intervals, and put the part less than 0 to the far right.

A running example. For ease of understanding, here is an
example. Suppose there are four tokens, namely “a”, “b”,
“c”, and “d”, with probabilities of 0.1, 0.2, 0.3, and 0.4,
respectively. Alice wants to embed 1 bit of information during
sampling, so she needs to create 21 = 2 “distribution copies”,
and the rotation step size is 1/2 = 0.5. As shown in the
first row in Fig. 1, she takes the order “a-b-c-d” as the initial
interval assignment scheme, i.e., the “distribution copy” with
index 0. Moreover, she rotates the initial interval assignment
scheme to the left by 0.5 to obtain the “distribution copy”
with index 1, as shown in the second row in Fig. 1. To embed
message b ∈ {0, 1}, she samples from the “distribution copy”
with the index b. Suppose she wants to embed 1, so she
samples from the “distribution copy” with index 1. Suppose
the pseudo-random number she consumes is r(t) = 0.2. She
finds that r(t) falls into the interval corresponding to “d”, so
she sends “d” to Bob. Bob receives “d”. He can create the same
“distribution copies” and consumes the same pseudo-random
number r(t) = 0.2. The received token “d” and the same
“distribution copies” and consumed pseudo-random number
r(t) allow him to uniquely determine that this “d” was obtained
by sampling from the “distribution copy” with index 1, so he
learns that the embedded information is 1.

The condition for unique decoding. When the tokens
sampled by the consumed pseudo-random number from all
“distribution copies” are different from each other, the receiver
can uniquely decode the message. In the above example, Fig. 1
shows the “distribution copies” when 1 bit of information is
to be embedded. Regardless of the value of the consumed
pseudo-random number r(t), it satisfies that the tokens cor-
responding to the intervals r(t) falls into in all “distribution
copies” are different, so Bob can uniquely decode the message.
When Alice tries to embed 2 bits of information, as shown
in Fig. 2, she needs to create 22 = 4 “distribution copies”,
and the rotation step size is 1/4 = 0.25. Note that there
will be cases where the consumed pseudo-random number
falls into the same token’s interval in several “distribution
copies”. In these cases, the intervals assigned to the same
token in different “distribution copies” have intersections, and
the consumed pseudo-random number, unfortunately, falls into
one of the intersections, resulting in the receiver cannot decode

0

0

0.1 0.3

0.2

0.2 0.6 0.7 1
index = 0

(initial)

index = 1
1-0.5 -0.4 -0.2 0.1 0.5 0.6 0.8

rotate left by 0.5

a b c d

a bc cd

Fig. 1: An example of the proposed steganography construction based on “distribution copies”. By rotating the interval
assignment scheme (i.e., the “distribution copy” with index 0) to the left by 0.5, the “distribution copy” with index 1 is obtained.
Alice wants to embed mi = 1, so she samples from the “distribution copy” with index mi = 1. Suppose the pseudo-random
number she consumes is r(t) = 0.2. She finds that r(t) falls into the interval corresponding to “d”, so she sends “d”. Bob
receives “d” at this time step and consumes the same pseudo-random number r(t) = 0.2. These two pieces of information
make Bob uniquely determine that this “d” is obtained by sampling from the “distribution copy” with index 1, so he learns the
message is mi = 1. Notably, rotating the interval assignment scheme to the left by 0.5 is equivalent to rotating the consumed
pseudo-random number to the right by 0.5 (e.g., r(t)0 = 0.2⇒ r

(t)
1 = 0.7).

the message uniquely. We call such intersections the disputed
ranges. For this example, to embed 1 bit of information
(Fig. 1), there is no disputed range; while to embed 2 bits of
information (Fig. 2), there will be disputed ranges, as shown in
the parts covered by gray masks in Fig. 2. For instance, in the
“distribution copies” with index 0 and 1, the intervals assigned
to the token “c” are [0.30, 0.60) and [0.55, 0.85) respectively,
and their intersection [0.55, 0.60) is a disputed range. If the
pseudo-random number does not fall into the disputed ranges,
2 bits of information can be embedded. Otherwise, 2 bits of
information cannot be embedded, so we can only return to
the case where only 1 bit of information can be embedded, as
illustrated in Fig. 1.

Notably, the disputed ranges do not affect the correct
extraction of the message. Because the receiver shares the
same settings with the sender, he can calculate the disputed
ranges and judge whether the pseudo-random number falls into
the disputed ranges. Therefore, he can know the actual length
of the embedded message and can create the same “distribution
copies” to extract the message.

Embedding rate. The embedding rate is defined as the
average number of bits that can be embedded per generated
token. Although the disputed ranges do not affect the correct
extraction of messages, they affect the embedding rate. The
shorter the total length of the disputed ranges, the higher the
embedding rate. We can similarly define the instantaneous
embedding rate β(t) as the number of bits embedded when
the t-th token is generated; then, the rotation step size at time
step t is 2−β(t)

. We denote the maximum token probability
at time step t as p

(t)
max, and the theoretical upper bound of

β(t) as B(t). According to the condition for unique decoding,
it can be deduced that p

(t)
max/2 < 2−B(t) ≤ p

(t)
max, and

β(t) =
⌊
B(t)

⌋
∈ N, so⌊
log2

1

p
(t)
max

⌋
≤ β(t) ≤

⌈
log2

1

p
(t)
max

⌉
.

Specifically, let α = log2

(
1/p

(t)
max

)
. If α ∈ N, then β(t) =

index = 0 (00)

index = 2 (10)

index = 3 (11)

index = 1 (01)

0

0

0

0

0.1 0.3 0.6 1

1

1

1

a b c d

0.1 0.5 0.6 0.8

a bc cd

0.25 0.35 0.55 0.85

a b c dd

0.05 0.35 0.75 0.85

c d a bb

Fig. 2: To embed 2 bits of information, we need to create
22 = 4 “distribution copies”, and the rotation step size is
1/4 = 0.25. The parts covered by the gray masks indicate the
disputed ranges. If the consumed pseudo-random number does
not fall into the disputed ranges, 2 bits of information can be
embedded. Otherwise, since the unique decoding condition is
not met, 2 bits of information cannot be embedded, so we can
only return to the case where only 1 bit of information can be
embedded, as shown in Fig. 1.

α; otherwise, β(t) may be ⌊α⌋ or ⌈α⌉, and which value it
is depends on whether the consumed pseudo-random number
falls into the disputed ranges. We can infer that the embedding
rate is asymptotic to the average of the minimum entropy [28]
over all time steps when the generated text is long enough.

An equivalent implementation. At each time step t, rotating
all intervals in [a, b) is equivalent to rotating the consumed
pseudo-random number r(t) in the opposite direction in [a, b).
For example, as shown in Fig. 1, rotating all intervals to the
left by 0.5 is equivalent to rotating r

(t)
0 to the right by 0.5.

In the following, we uniformly create “distribution copies”
by rotating the consumed pseudo-random numbers to the right.
For convenience of description, in Algorithm 1 we define
the function rotate(a, d, e) to calculate the value obtained by
rotating a to the right by d in the interval [0, e). With the
function, we start to prove the security of Discop.

Intuitive proof of security. The steganography method based
on “distribution copies” performs a random sampling from

Algorithm 1: rotate(a, d, e): rotate a to the right by
d in the interval [0, e)

Input: Original Number a, Rotate Distance d, The
End Point of the Interval (exclusive) e

Output: The Value Obtained after Rotation b
b← a+ d
if b ≥ e then

b← b− e

return b

one of the copies. Since the distribution of all copies is
identical, the steganographic behavior does not destroy the
original distribution, so DKL (Pc∥Ps) = 0.

Rigorous proof of security. First, consider the case where
only 1 bit of information (mi = 0 or 1) is embedded.
Evidently, the sum of the probabilities of all possible values
is 1, i.e., Pr [mi = 0]+Pr [mi = 1] = 1. The pseudo-random
numbers generated by the PRNG obey the uniform distribution
in [0, 1), that is, r ∼ U [0, 1). Suppose that any value a in the
[0, 1) interval is selected with a probability density of p, then

Pr [r = a] = Pr [r = rotate (a, 0.5, 1)] = p.

Let r′ be the equivalent value of the pseudo-random number
after rotating, then

Pr [r′ = a] = Pr [r = a]× Pr [mi = 0]

+ Pr [r = rotate (a, 0.5, 1)]× Pr [mi = 1]

= p = Pr [r = a] .

Similarly, this conclusion also holds when embedding multiple
bits of information. In this way, we show that the proposed
steganography method based on “distribution copies” does
not modify the probability density of arbitrary pseudo-random
numbers at each time step t, so the actual distribution for
steganographic sampling is equal to the original distribution.
At time step t+1, the history consists of steganographic tokens
(generated in the previous t time steps) indistinguishable from
normal ones. By analogy, the distribution at each time step is
not modified, so security holds overall. Q.E.D.

B. Improving the Embedding Rate by Recursion

Although the steganography construction described above
can perfectly achieve the goal of being provably secure, the
embedding rate is asymptotic to the average of minimum
entropy of all time steps, which is low and far from the theoret-
ical limit (i.e., the average entropy of all time steps). Therefore,
we further investigate how to improve the embedding rate.

Consider a simple case where there are three tokens, “a”,
“b”, and “c”, with probabilities of 0.5, 0.25, and 0.25. If
we just use the construction in Sec. III-A, only one bit can
be embedded. Our idea is that the embedding rate can be
improved by grouping. Specifically, we put “b” and “c” into a
group G in advance. We see that the probabilities of token “a”
and group G are 0.5 and 0.5, and we can certainly embed one

bit. Then if G is selected, since the normalized probabilities
of “b” and “c” in G are 0.5 and 0.5, we can additionally
embed one bit. Following this idea, we construct a binary tree
by recursive grouping, and then embed the message bits in
the process of a series of child node selections from the root
node to a leaf node. This is equivalent to decomposing one-
round sampling from a multivariate distribution into multiple-
round sampling from bivariate distributions. It is possible to
embed one bit during each sampling, thereby increasing the
embedding rate.

Minimizing the total length of the disputed ranges. How to
construct a binary tree so that the embedding rate is as large as
possible? Similar to that discussed in Sec. III-A, at each non-
leaf node, the shorter the total length of the disputed ranges is,
the more likely it is to embed one bit. So our greedy strategy
is to minimize the total length of the disputed ranges. We use
Vj to denote the j-th token in the vocabulary V , and p

(t)
j to

denote the conditional probability of the j-th token predicted
by M at time step t. Suppose that the groups corresponding
to the left and right child nodes of each non-leaf node are
Gleft and Gright. It is easy to calculate the total length of the
disputed ranges,∣∣∣∣∣∣

∑
Vj∈Gleft

p
(t)
j −

∑
Vj∈Gright

p
(t)
j

∣∣∣∣∣∣ .
The smaller the value, the higher the embedding rate. We use
the Huffman tree because it can construct a series of bivariate
distributions that are as balanced as possible so that this value
is as small as possible.

We name the steganography method based on “distribution
copies” with recursion as Discop. The overview of Discop
is illustrated in Fig. 3. Both parties (Alice and Bob) need to
share the same settings: 1) the initial context, 2) the PRNG,
and 3) the symmetric key K (the seed for the PRNG). At
each time step of Discop’s embedding or extraction process,
the generative model predicts the probability distribution of
the next token conditioned on the current context, and a
Huffman tree is created based on this distribution. During
the embedding process, Alice makes a series of child node
selections to obtain the next token based on 1) the pseudo-
random numbers generated by the PRNG and 2) the message
to be embedded. She repeats the process to get the stego.
Then she sends it to Bob. In the extraction process, Bob can
synchronize all states with Alice and extract the message from
the stego. In the following, we will first introduce the two sub-
procedures that are integral to both the message embedding
and extraction algorithms: the construction of a Huffman tree
and the selection of child nodes.

Constructing a Huffman tree. At each time step t, we create
a Huffman tree [54] according to the conditional probability
distribution P(t). An example is shown in Fig. 5. It is a
binary tree; each leaf node corresponds to a token, and
each non-leaf node corresponds to a group containing several
tokens. Appendix A provides a linear complexity algorithm

Embedding Stego

Generative
Model

PRNG

Context

Key

Message Bits

1 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0

This film starts at a
gentle pace gradually
explaining what has
happened to the Earth
before getting the mission
to save the world started.

Once the mission is
underway there is plenty of
tension, including some
particularly gripping
moments on the second
planet they visit. The small
cast does a fine job. The
effects looked great, as one
would expect...

1000101010110010...

 Once the mission is

Extracting

. . .

. . . Alice Bob

Eve

Internet

!d@>M#['$\3%-1=^

Fig. 3: An overview of Discop. Alice and Bob need to share the same settings: 1) the initial context, 2) the PRNG, and 3)
the symmetric key K (the seed for the PRNG). At each time step of Discop’s embedding or extraction process, the generative
model predicts the probability distribution of the next token conditioned on the current context, and a Huffman tree is created
based on this distribution. During the embedding process, Alice makes a series of child node selections to obtain the next token
based on 1) pseudo-random numbers generated by the PRNG and 2) the message to be embedded. She repeats the process to
get the stego. Then she sends it to Bob. In the extraction process, Bob can synchronize all states with Alice and extract the
message from the stego.

for creating a Huffman tree. At the beginning of each time
step, we are at the root node.

Child node selection. At each non-leaf node of the tree,
we can select one of its two child nodes, possibly to ex-
press one bit. Suppose that we want to embed one bit mi

at a non-leaf node. We consume a pseudo-random num-
ber r ∈ [0,node.prob), where node.prob is the probabil-
ity sum of all tokens contained in the current node. We
decide which child node to select according to the inter-
val the value rotate (r, mi × 0.5× node.prob, node.prob)
falls into. Specifically, if mi = 0, we move to the child
node that r falls into; otherwise, we move to the child node
the value rotate (r, 0.5× node.prob, node.prob) falls into.
However, if both r and its rotated value fall into the interval
of the same child node, that is, r falls into the disputed ranges,
then we also need to move to this child node, but no bit is
embedded in this child node selection, and leave mi to the
next step.

Next, we will describe Discop’s message embedding and

0.2

0.145
0.136

0.125 0.125
0.114

0.105

0.05

name friend dear little new god mom cell
0

0.05

0.1

0.15

0.2

0.25
Context = “Hello, my”

C
on

di
tio

na
l P

ro
ba

bi
lit

y

Token

Fig. 4: An example of the distribution of the next token.

Algorithm 2: The main loop of Discop’s message
embedding algorithm
Input: Context C, PRNG, Language Model M, Seed

K, Message to Embed m
Output: Stego S
S ← “ ”
PRNG.set seed (K)
while not the end of m do
P(t) ←M(C) // predict
nm, w ← sample

(
P(t),m,PRNG

)
m←m[nm :]
C ← C∥w
S ← S∥w

return S

extraction algorithms.

Embedding. The main loop of Discop’s message embedding
algorithm is shown in Algorithm 2. Suppose that we want
to embed the message m. At time step t, we first build a
Huffman tree according to P(t), and start from the root node.
We repeat the child node selection process until the current
node is already a leaf node and its corresponding token is
sampled as the next token, and we append it to the end of
the context. The above process is repeated until the message
is completely embedded. Algorithm 3 shows the sampling
process at each time step.

Extraction. The order of extracting the message is the same as
that of embedding the message, i.e., traversing all tokens from
the first to the last. As long as the receiver shares the same
settings with the sender, all states can be synchronized. At
each time step, conditioned on the same context, the receiver

0.439

0.200 0.239

0.561

0.261 0.300

0.145 0.155

0.050 0.105

[0.200, 0.439)

friend

cell mom

[0.000, 1.000)

[0.439, 0.700) [0.700, 1.000)

[0.700, 0.845)
[0.845, 1.000)

[0.845, 0.895) [0.895, 1.000)

0.4390 1

name
0 0.4390.200

0.2033 0.4228

0 0.239

littlegod
0.0393 0.1588

0.114

0.3123 0.8123

Context = “Hello, my”

Next token = “god”

Actual embedded message = [1, 0]

1.000

0.125 0.136

new
[0.439, 0.564) [0.564, 0.700)

dearlittle
[0.314, 0.439)

0.1250.114

god
[0.200, 0.314)

name
[0.000, 0.200)

[0.439, 1.000)

root

Message = [..., 1, 0, 1, ...]

[0.000, 0.439)

Huffman Tree Construction Message Embedding Process

Fig. 5: An example of Discop’s embedding algorithm corresponds to the distribution in Fig. 4.

can use the same model to obtain the same distribution and
create the same Huffman tree with the sender. According to
the current received token, the path from the root node of the
Huffman tree to the leaf node can be uniquely determined.
In each non-leaf node on the path, the receiver can extract
one bit (or none) by determining which child node the current
token belongs to. Finally, he concatenates all the extracted bits
together to obtain the entire message.

A running example. To make this process easy to understand,
here is an example. Suppose that the bits we want to embed
are [. . . , 1, 0, 1, . . .], and the context is “Hello, my”. We use
M to predict the probability distribution of the next token
conditioned on the context, which is shown in Fig. 4. The
Huffman tree corresponding to this distribution is shown in
Fig. 5. The process of message embedding is as follows.

1) Initially, we are at the root node of the tree, which is
a non-leaf node, so we make a child node selection.
We use the PRNG to generate a pseudo-random number
r(k) ∈ [0, 1). Assuming that we get r(k) = 0.8123, we
rotate it by 0 and 0.5, and obtain r

(k)
0 = 0.8123 and

r
(k)
1 = 0.3123. They fall into the intervals corresponding

to different child nodes, namely G1 and G0, so we can
embed 1 bit of information mi = 1 by selecting the
child node G0 corresponding to r

(k)
1 .

2) Now we are at G0, a non-leaf node, so we make a child
node selection again. We use the PRNG to generate a
pseudo-random number r(k+1) ∈ [0, 0.439). Assuming
that we get r(k+1) = 0.2033, we rotate it by 0 and
0.5 × 0.439 = 0.2195, and obtain r

(k+1)
0 = 0.2033

and r
(k+1)
1 = 0.4228. Unfortunately, they fall into the

interval corresponding to the same child node, G01, so
we cannot embed any information here, and leave mi+1

to the next step. Since both r
(k+1)
0 and r

(k+1)
1 fall into

G01, we have to select G01.
3) Now we are at G01, a non-leaf node, so we make a child

node selection again. We use the PRNG to generate a
pseudo-random number r(k+2) ∈ [0, 0.239). Assuming
that we get r(k+2) = 0.0393, we rotate it by 0 and
0.5 × 0.239 = 0.1195, and obtain r

(k+2)
0 = 0.0393

and r
(k+2)
1 = 0.1588. They fall into the intervals

corresponding to different child nodes, namely the token
“god” and the token “little”, so we can embed 1 bit
of information mi+1 = 0 by selecting the token “god”
corresponding to r

(k+2)
0 .

4) Now we are at a leaf node, so we sample the token “god”
corresponding to this node as the next token and append
it to the context. After the above process, we actually
embed 2 bits of information [1, 0]. The subsequent bits
will be embedded by similar generation processes later.

We note that a previous Huffman coding-based steganog-
raphy method [55] also involved Huffman trees. However, it
used the token indexes to express the message, similar to the
AC-based methods. It would damage the original distribution
more seriously than the AC-based methods. Instead, Discop
uses the “distribution copy” indexes to express the message
without destroying the distribution.

Complexity. At each time step, the Discop algorithm mainly
includes two processes: creating a Huffman tree and a series
of child node selections (walking from the root node to the
leaf node). Let the size of the vocabulary be |V |. Creating a
Huffman tree can be implemented in linear complexity, i.e.
O (|V |). The average complexity of walking from the root
node to a leaf node of the tree is O (log |V |).

IV. DEPLOYMENTS

Theoretically, Discop can be deployed on any explicit
generative model that can yield probability distributions. Here,
to illustrate Discop’s support for diverse generation tasks
(or media), we select several typical generation tasks and
corresponding publicly available pre-trained models to deploy
Discop on, as shown in Table I. We have described in detail

Algorithm 3: sample
(
P(t),m,PRNG

)
: sampling at

time step t

Input: Distribution P(t), Message to Embed m,
PRNG

Output: Number of Bits Embedded nm, Selected Next
Token w

struct {
token,prob, left, right

} Node
node← create tree

(
P(t)

)
// the root node

nm ← 0
while not node.is leaf() do

r ← PRNG.random (0,node.prob)
// r ∈ [0,node.prob)
r0 ← r
r1 ← rotate (r, 0.5× node.prob, node.prob)
separator← node.left.prob
next ← []
if r0 ≤ separator then

next[0]← node.left
else

next[0]← node.right

if r1 ≤ separator then
next[1]← node.left

else
next[1]← node.right

if next[0] ̸= next[1] then // embed one bit
nm ← nm + 1

node← next [m [nm]]

w ← node.token
return nm, w

how to deploy Discop on the text generation task in Sec. III.
Similarly, we also deploy Discop on auto-regressive models
for image completion and text-to-speech tasks. Note that the
deployment scenarios of Discop are not limited to these.

Before starting covert communication, the two parties must
agree on a protocol, i.e., they should share the same settings.
The basic settings include the steganography method, the
PRNG, and the seed. In addition, there may be additional
settings for a specific task, which will be described separately
in the following.

A. Text Generation

To deploy Discop on this task, both communication parties
need to share the same initial context, which can be empty (for
unconditional generation) or consist of a specified number of
tokens or sentences. As shown in Fig. 6(a), for example, if both
parties agree to use n tokens as the initial context, the sender
can choose arbitrary n tokens as the initial context, then use
the Discop embedding algorithm to write a continuation of it
with the message embedded to obtain the stego-text, and send
the concatenation of the initial context and stego-text to the

receiver. After receiving the text, the receiver can split it into
two parts according to the protocol and then use the Discop
extraction algorithm to extract the message.

B. Image Completion

To deploy Discop on this task, both parties should share
the initial context of the image, which can be achieved by
sharing a context proportion parameter pc (which indicates
the proportion of the initial context to the full image). As
shown in Fig. 6(b), the sender uses the Discop embedding
algorithm to complete an image part of size (pc ×m)× n to
a complete image of size m × n in a pixel-by-pixel manner
and sends it to the receiver. The receiver knows pc and can
segment the received image into two parts: the initial context
and the stego-image, then use the Discop extraction algorithm
to extract the message.

C. Text-to-Speech

To deploy Discop on this task, as shown in Fig. 6(c), the
sender uses the Discop embedding algorithm to convert the
text to a corresponding speech in a sample-by-sample3 manner.
The receiver uses the Discop extraction algorithm to extract
the message. Note that the receiver should share the text
corresponding to the speech with the sender, which can be
achieved by the sender sending the text directly along with
the speech or by the receiver performing speech recognition.

For GPT-2 [48], DistilGPT-2 [56], Transformer-XL [57],
and Image GPT [58], we directly employ the pre-trained
models provided by Hugging Face [61]. For Tacotron [59]
and WaveRNN [60], we employ the public pre-trained models
from GitHub4,5.

V. EXPERIMENTS AND EVALUATION

In this section, we conduct experiments to present the per-
formance of Discop mainly in terms of security and efficiency,
and compare Discop with previous methods attempting to
achieve provable security in practice.

A. Setup

We follow the deployments described in Sec. IV to carry
out experiments. In the experiments, we introduce nucleus
sampling [62], a.k.a. top-p sampling, which is now widely
used in generation tasks. It chooses the smallest possible set
whose cumulative probability exceeds p and then normalizes
the probability distribution of this set and performs random
sampling from the normalized distribution. To better evaluate
the performance in various scenarios, we set the truncation
parameter p = 0.80, 0.92, 0.95, 0.98, 1.00. Other settings
on the three deployed tasks are as follows.

1) Text generation: For each p, we select 100 pieces of text
from the IMDb dataset [63]. We use the first three sentences
of each sample as the context and generate the subsequent 100
tokens conditioned on the context.

3The “sample” here refers to an element in a waveform.
4https://github.com/bshall/Tacotron
5https://github.com/bshall/UniversalVocoding

https://github.com/bshall/Tacotron
https://github.com/bshall/UniversalVocoding

TABLE I: The tasks/models we implemented the deployment of Discop on.

Task Description Model

Text Generation Given a context, write a continuation of it. GPT-2 [48], DistilGPT-2 [56], Transformer-XL [57]

Image Completion Given part of an image (e.g., the upper half part), complete it. Image GPT [58]

Text-to-Speech Given a piece of text, synthesize its corresponding speech. Tacotron [59] + WaveRNN [60]

Message
Attack at dawn!

a tree was 20 years
ago. The second
best time is now.

Attack at dawn!

The best time to plant

a tree was 20 years
ago. The second
best time is now.

The best time to plant
Stego-text

a tree was 20 years
ago. The second
best time is now.

Initial Context
The best time to plant

Discop Embedding

Generative Model

Discop Extraction

Generative Model

Initial Context

ConcatenationStego-text

Sender Receivcer

Message

(a) Text Generation
Initial Context

Message
Attack at dawn!

Stego-image
Message

Attack at dawn!

Initial Context

Stego-image

Concatenation

Discop Embedding

Generative Model

Discop Extraction

Generative Model

Sender Receivcer

(b) Image Completion

Message
Attack at dawn!

Message
Attack at dawn!

Text
This is a text.

Text
This is a text.

Stego-speech

Speech
Recognition

Discop Embedding

Generative Model

Discop Extraction

Generative Model

Sender Receivcer

(c) Text-to-Speech

Fig. 6: Schematic diagrams of deploying Discop on the three tasks.

2) Image completion: For each p, we select 100 images
from the CelebA dataset [64]. We resize each image to the
size specified by the model and provide the upper part of the
image to the model to complete the image.

3) Text-to-speech (TTS): For each p, we select 100 pieces of
text from the IMDb dataset [63]. We use the model to generate
the speech corresponding to the first sentence of each text.

We compare Discop with Meteor [33] and ADG [34] only
on the text generation task because both of them are originally
deployed only on this task. The base version of Meteor has
a low embedding rate, for which its authors have designed a
heuristic sorting algorithm to improve the embedding rate. We
benchmark Meteor for both the base version and the version
with sorting. Since Meteor is an enhanced version of the basic
AC-based method, we do not need to benchmark the basic AC-
based method.

All experiments are carried out under the same hardware
settings (CPU 3.00GHz, 128GB RAM, and NVIDIA RTX
3090). The involved datasets are loaded from the Datasets
library provided by Hugging Face [65].

B. Metrics

We evaluate the performance of Discop in terms of both
security and efficiency. We consider that the efficiency of
steganography mainly includes two aspects: the embedding
rate and the time consumption. To better characterize the
distance between the embedding rate and the theoretical limit
(i.e., the average value of entropy for all time steps), we
propose a new metric, the utilization rate of entropy.

1) Security: Again, the primary pursuit of steganography is
“behavioral security”. That is, steganographic behavior should
be indistinguishable from normal behavior. Here, we pursue
that the generated text with message embedded (stegos) is
indistinguishable from the “normal” generated text without
message embedded (covers). We follow Cachin’s formalization
of steganographic security from the perspective of information
theory [27] and use the KL divergence between Pc and Ps, i.e.,
DKL (Pc∥Ps), to measure security, which is also the foremost
metric to measure the competence of a steganography method.
During each token sampling, the model gives the original
distribution. To embed message bits, a steganography method
may modify the original distribution (e.g., ADG tunes the total
probability of each group to 2−n, n ∈ N), and we can get the

TABLE II: Quantitative comparison with the previous attempts using GPT-2.

Method p
Total Time
(seconds)

Ave Time ↓
(seconds/bit)

Ave KLD ↓
(bits/token)

Max KLD ↓
(bits/token)

Capacity
(bits/token)

Entropy
(bits/token) Utilization ↑

ADG

0.80 96.71 3.16E-03 7.93E-03 6.76E-02 3.07 3.95 0.78
0.92 104.48 2.57E-03 1.02E-02 4.75E-02 4.06 4.93 0.82
0.95 114.72 2.62E-03 1.09E-02 4.73E-02 4.38 5.34 0.82
0.98 150.68 3.08E-03 1.20E-02 4.54E-02 4.89 5.83 0.84
1.00 846.27 1.57E-02 1.31E-02 4.99E-02 5.39 6.26 0.86

Meteor
w/o sort

0.80 95.58 3.73E-03 5.13E-02 8.28E+00 2.56 3.83 0.67
0.92 96.16 2.79E-03 8.17E-03 5.62E+00 3.44 4.82 0.71
0.95 98.57 2.61E-03 3.40E-03 1.30E+00 3.78 5.15 0.73
0.98 105.37 2.51E-03 6.59E-04 1.74E+00 4.20 5.61 0.75
1.00 251.48 5.56E-03 1.05E-06 1.68E-05 4.52 5.96 0.76

Meteor

0.80 282.18 9.71E-03 5.57E-02 9.01E+00 2.91 3.76 0.77
0.92 1359.87 3.33E-02 9.34E-03 4.63E+00 4.09 4.87 0.84
0.95 2334.54 5.21E-02 2.77E-03 6.98E-01 4.48 5.23 0.86
0.98 5559.88 1.16E-01 5.57E-04 8.23E-01 4.79 5.60 0.86
1.00 47301.20 9.11E-01 1.06E-06 1.68E-05 5.19 5.98 0.87

Discop
w/o recursion

(Proposed)

0.80 101.33 5.52E-03 0 0 1.84 3.84 0.48
0.92 102.78 5.00E-03 0 0 2.06 4.83 0.43
0.95 103.11 4.74E-03 0 0 2.17 5.29 0.41
0.98 105.81 4.70E-03 0 0 2.25 5.68 0.40
1.00 145.81 6.38E-03 0 0 2.29 6.03 0.38

Discop
(Proposed)

0.80 104.30 2.99E-03 0 0 3.48 3.79 0.92
0.92 104.36 2.29E-03 0 0 4.55 4.86 0.94
0.95 107.07 2.21E-03 0 0 4.84 5.18 0.94
0.98 115.13 2.17E-03 0 0 5.29 5.59 0.95
1.00 362.63 6.29E-03 0 0 5.76 6.08 0.95

Random
Sampling

0.80 91.21 N/A 0 0 N/A 3.80 N/A
0.92 90.89 N/A 0 0 N/A 4.80 N/A
0.95 92.39 N/A 0 0 N/A 5.15 N/A
0.98 95.20 N/A 0 0 N/A 5.59 N/A
1.00 174.09 N/A 0 0 N/A 5.87 N/A

actual distribution for steganographic sampling. So the KL
divergence between these two distributions can be calculated.
In the experiment, we use two KL divergence metrics:

• Ave KLD: The average value of the KL divergence for
all time steps. It is obtained by dividing the cumulative
KL divergence over all time steps by the total number of
tokens, indicating the average degree of damage to the
original distribution by the steganography method. The
lower, the better.

• Max KLD: The maximum value of the KL divergence
for all time steps. This indicates the most severe degree of
damage to the original distribution by the steganography
method. The lower, the better.

2) Utilization: The embedding rate, a.k.a. capacity in some
papers, is typically defined as the average number of bits that
can be embedded per generated token. However, random sam-
pling is used in the generation process so that the theoretical
limit of the length of the message that can be embedded
(i.e., the sum of entropy over all time steps) is not fixed.
Therefore, to better evaluate the embedding ability, we propose
a new metric, the utilization rate of entropy, Utilization for
short, which is defined as the ratio of the total length of the
embedded message to the entropy sum over all time steps. The
higher, the better.

3) Time: To realize real-time covert communication, we
expect to complete steganographic embedding and extraction
in a relatively short time. We define a metric called Ave Time,
which is obtained by dividing the total time of the entire
process by the total length of the embedded message. The
shorter, the better. In addition, we expect that the additional
time consumption caused by Discop’s embedding is as little
as possible compared to the normal generation (random sam-
pling) process. We performed timing tests on these models
for the Discop generation process and the random sampling
process.

In addition, we conduct steganalysis and generation quality
evaluation experiments for Discop in Appendix C and D.

C. Results and Analysis

Note that for the text generation task, we only show the
experimental results of deploying these methods on GPT-2
because the results obtained by deploying these methods on
the other two models are similar.

1) Comparison to Baselines: We compare Discop with
Meteor [33] and ADG [34] only on the text generation task
because both of them are deployed only on this task. The
experimental results are presented in Table II. In this table,
“Meteor w/o sort” and “Meteor” correspond to the base
version and the version with sorting of Meteor, respectively.
“Discop w/o recursion” corresponds to our elementary method

proposed in Sec. III-A. “Random Sampling” is a reference
that indicates the “normal” generation without embedding any
message. According to the previous definitions and analysis,
Ave Time, Ave KLD, Max KLD, and Utilization are the
key metrics to measure the performance of steganography
methods, and Total Time, Embedding Rate, and Entropy
are also listed in the table for reference. Overall, our method
outperformed the other methods in almost all metrics. The
experimental results are described and analyzed as follows.

a) Security: The KL divergence of Meteor and ADG is
far from negligible, which may cause the adversary to gain a
non-negligible advantage. The non-negligible KL divergence
in ADG is likely due to issues around grouping discrete
probabilities (as discussed in Sec. II-E(2)(b)), while in Meteor
it is likely due to implementation problems (as discussed in
Sec. II-E(1)(e)). Since Discop does not fundamentally change
the original distributions, it achieves the goal that the KL
divergence is zero, which is not achieved by other methods.

b) Utilization: The utilization of entropy by ADG and
Meteor is in the range of 0.77 to 0.87, while that by Discop
is in the range of 0.92 to 0.95. Discop makes better use of
entropy than other methods, and the recursion strategy signifi-
cantly improves the utilization. For the embedding rate, Discop
can embed 3.48 to 5.76 bits of information per generated
token, which is better than baselines.

c) Time: Under most truncation settings, all methods
except Meteor can embed the messages at a competitively low
time consumption. Compared to “normal” random sampling,
they do not take much extra time. In contrast, Meteor adopts a
heuristic interval sorting algorithm, which results in enormous
time costs. As a result, to embed a message of the same
length, Meteor takes 3.25× to 144.88× the time cost of
Discop, which is probably unacceptable when real-time covert
communication is needed.

2) Evaluation of additional time consumption: The exper-
imental results are shown in Table III. Compared to random
sampling, most of the additional time of Discop’s embedding
algorithm is consumed in creating Huffman trees, which is
proportional to the number of candidate tokens. As can be
seen, for GPT-2 with 50,257 candidate tokens, the top-p
truncation (p ̸= 1.00) removes a large number of candidate
tokens, making the additional time very short. For Image GPT
with 512 candidate tokens and WaveRNN with 1024 candidate
tokens, the number of candidate tokens is much smaller than
that of GPT-2, so regardless of the value of p, the extra
time introduced by Discop’s message embedding algorithm
is relatively short.

VI. DISCUSSION

A. Out-of-Band Cost

In general, the sender needs to use an encryption key to
encrypt the message before performing the embedding algo-
rithm; on the other hand, the receiver needs to use the same
key to decrypt the message after performing the extraction
algorithm. Therefore, steganography involves two keys: the

TABLE III: The additional time consumption introduced by
Discop to embed messages.

Task/Model p
Random Sampling

Time (seconds)
Discop

Time (seconds) Ratio

Text Generation
GPT-2

0.80 91.21 104.30 1.14
0.92 90.89 104.36 1.15
0.95 92.39 107.07 1.16
0.98 95.20 115.13 1.21
1.00 174.09 362.63 2.08

Image Completion
Image GPT

0.80 739.82 741.35 1.00
0.92 740.57 750.96 1.01
0.95 742.79 832.52 1.12
0.98 738.57 763.67 1.03
1.00 752.24 759.24 1.01

Text-to-speech
WaveRNN

0.80 2500.56 2679.60 1.07
0.92 2522.93 2599.81 1.03
0.95 2520.88 2649.25 1.05
0.98 2537.15 2700.39 1.06
1.00 2744.50 3582.87 1.31

encryption key and the steganography key, which need to be
transmitted over an out-of-band channel in advance.

For Discop, the steganographic key is the seed used to
initialize the PRNG. Other important components including
the generative model and the PRNG—which are publicly
available—can be considered part of the protocol.

To avoid the out-of-band cost, a possible solution is in-
troducing an existing public-key steganography method such
as [38]. Similar to hybrid encryption, a public-key steganog-
raphy session could establish a shared state, and Discop can
use that state for its operation.

B. Limitations

We would like to clarify the limitations of Discop.

• Discop is only suitable for explicit generative models that
can yield probability distributions, e.g., auto-regressive
models.

• Discop requires both parties to share the pseudo-random
numbers used to perform sampling, so it can only con-
struct symmetric-key steganography but not public-key
steganography.

VII. CONCLUSION

In this paper, we analyze the problems faced by previous
attempts to achieve provably secure steganography in practice.
To overcome these problems, we present Discop, a novel,
efficient, provably secure steganography method in practice
based on “distribution copies”, which does not destroy the
original data distribution when embedding the message. We
deploy Discop on diverse generation tasks (or media) and
conduct a series of experiments. The experimental results
show that Discop’s security and efficiency outperform previous
attempts. Moreover, the embedding rate of Discop reaches
approximately 0.92 to 0.95 of the theoretical limit. We hope
this work will provide the foundation and inspiration for future
work on censorship circumvention.

ACKNOWLEDGEMENT

We thank the reviewers for their valuable comments. This
work was supported in part by the Natural Science Founda-
tion of China under Grant 62102386, 62002334, 62072421,
62121002 and U20B2047, by Xiaomi Young Scholars Pro-
gram, and by Open Fund of Anhui Province Key Laboratory
of Cyberspace Security Situation Awareness and Evaluation.

REFERENCES

[1] P. Gill, M. Crete-Nishihata, J. Dalek, S. Goldberg, A. Senft, and
G. Wiseman, “Characterizing Web Censorship Worldwide: Another
Look at the OpenNet Initiative Data,” ACM Transactions on the Web,
vol. 9, no. 1, pp. 4:1–4:29, Jan. 2015.

[2] F. Cramer, “Hiding in plain sight. amy sou wu’s the kandinsky collec-
tive,” Inmaterial. Diseño, Arte y Sociedad, vol. 2, no. 4, pp. 105–114,
2017.

[3] S. Landau, “Highlights from making sense of snowden, part ii: What’s
significant in the nsa revelations,” IEEE Security & Privacy, vol. 12,
no. 1, pp. 62–64, 2014.

[4] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th USENIX Security
Symposium, August 9-13, 2004, San Diego, CA, USA, M. Blaze, Ed.
USENIX, 2004, pp. 303–320. [Online]. Available: http://www.usenix.
org/publications/library/proceedings/sec04/tech/dingledine.html

[5] M. W. Al Nabki, E. Fidalgo, E. Alegre, and I. de Paz, “Classifying
Illegal Activities on Tor Network Based on Web Textual Contents,”
in Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Volume 1, Long Papers.
Valencia, Spain: Association for Computational Linguistics, 2017, pp.
35–43.

[6] A. Cuzzocrea, F. Martinelli, F. Mercaldo, and G. Vercelli, “Tor traffic
analysis and detection via machine learning techniques,” in 2017 IEEE
International Conference on Big Data (Big Data), 2017, pp. 4474–4480.

[7] F. A. Saputra, I. U. Nadhori, and B. F. Barry, “Detecting and blocking
onion router traffic using deep packet inspection,” in 2016 International
Electronics Symposium (IES), Sep. 2016, pp. 283–288.

[8] D. Sarkar, P. Vinod, and S. Y. Yerima, “Detection of Tor Traffic using
Deep Learning,” in 2020 IEEE/ACS 17th International Conference on
Computer Systems and Applications (AICCSA), 2020, pp. 1–8.

[9] D. Barradas, N. Santos, L. Rodrigues, and V. Nunes, “Poking a Hole
in the Wall: Efficient Censorship-Resistant Internet Communications by
Parasitizing on WebRTC,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’20.
New York, NY, USA: Association for Computing Machinery, Oct. 2020,
pp. 35–48.

[10] M. B. Rosen, J. Parker, and A. J. Malozemoff, “Balboa: Bobbing
and Weaving around Network Censorship,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 3399–3413.

[11] G. Figueira, D. Barradas, and N. Santos, “Stegozoa: Enhancing webrtc
covert channels with video steganography for internet censorship cir-
cumvention,” in Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security, 2022, pp. 1154–1167.

[12] J. K. H. Iv, M. Georgiou, A. J. Malozemoff, and T. Shrimpton, “Security
Foundations for Application-Based Covert Communication Channels,”
in 2022 IEEE Symposium on Security and Privacy (SP), 2022, pp. 1971–
1986.

[13] J. Mahmod and M. Hicks, “Invisible bits: hiding secret messages in
sram’s analog domain,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 1086–1098.

[14] A. D. Ker, “Improved detection of lsb steganography in grayscale
images,” in International workshop on information hiding. Springer,
2004, pp. 97–115.

[15] J. Fridrich, “Minimizing the embedding impact in steganography,” in
Proceedings of the 8th Workshop on Multimedia and Security, 2006,
pp. 2–10.

[16] X. Zhang and S. Wang, “Efficient steganographic embedding by ex-
ploiting modification direction,” IEEE Communications letters, vol. 10,
no. 11, pp. 781–783, 2006.

[17] W. Zhang and X. Wang, “Generalization of the zzw embedding construc-
tion for steganography,” IEEE Transactions on Information Forensics
and Security, vol. 4, no. 3, pp. 564–569, 2009.

[18] T. Filler, J. Judas, and J. Fridrich, “Minimizing additive distortion in
steganography using syndrome-trellis codes,” IEEE Transactions on
Information Forensics and Security, vol. 6, no. 3, pp. 920–935, 2011.

[19] W. Li, W. Zhang, L. Li, H. Zhou, and N. Yu, “Designing near-
optimal steganographic codes in practice based on polar codes,” IEEE
Transactions on Communications, vol. 68, no. 7, pp. 3948–3962, 2020.

[20] J. Fridrich and J. Kodovsky, “Rich models for steganalysis of digital
images,” IEEE Transactions on information Forensics and Security,
vol. 7, no. 3, pp. 868–882, 2012.

[21] M. Boroumand, M. Chen, and J. Fridrich, “Deep residual network
for steganalysis of digital images,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 5, pp. 1181–1193, 2018.

[22] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, “Hidden: Hiding
data with deep networks,” in Computer Vision - ECCV 2018
- 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part XV, 2018, pp. 682–697. [Online]. Available:
https://doi.org/10.1007/978-3-030-01267-0 40

[23] K. A. Zhang, A. Cuesta-Infante, L. Xu, and K. Veeramachaneni,
“Steganogan: High capacity image steganography with gans,” arXiv
preprint arXiv:1901.03892, 2019.

[24] Z. Guan, J. Jing, X. Deng, M. Xu, L. Jiang, Z. Zhang, and Y. Li,
“Deepmih: Deep invertible network for multiple image hiding,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

[25] J. Tan, X. Liao, J. Liu, Y. Cao, and H. Jiang, “Channel attention image
steganography with generative adversarial networks,” IEEE Trans.
Netw. Sci. Eng., vol. 9, no. 2, pp. 888–903, 2022. [Online]. Available:
https://doi.org/10.1109/TNSE.2021.3139671

[26] S. Baluja, “Hiding images within images,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 42, no. 7, pp. 1685–1697, 2020. [Online]. Available:
https://doi.org/10.1109/TPAMI.2019.2901877

[27] C. Cachin, “An Information-Theoretic Model for Steganography,” in
Information Hiding, D. Aucsmith, Ed. Berlin, Heidelberg: Springer,
1998, pp. 306–318.

[28] N. J. Hopper, J. Langford, and L. von Ahn, “Provably Secure Steganog-
raphy,” in Advances in Cryptology — CRYPTO 2002, M. Yung, Ed.
Berlin, Heidelberg: Springer, 2002, pp. 77–92.

[29] T. V. Le, “Efficient provably secure public key steganography,”
IACR Cryptol. ePrint Arch., p. 156, 2003. [Online]. Available:
http://eprint.iacr.org/2003/156

[30] K. Yang, K. Chen, W. Zhang, and N. Yu, “Provably secure generative
steganography based on autoregressive model,” in Digital Forensics
and Watermarking - 17th International Workshop, IWDW 2018, Jeju
Island, Korea, October 22-24, 2018, Proceedings, ser. Lecture Notes in
Computer Science, C. D. Yoo, Y. Q. Shi, H. Kim, A. Piva, and G. Kim,
Eds., vol. 11378. Springer, 2018, pp. 55–68. [Online]. Available:
https://doi.org/10.1007/978-3-030-11389-6 5

[31] K. Chen, H. Zhou, H. Zhao, D. Chen, W. Zhang, and N. Yu,
“Distribution-preserving steganography based on text-to-speech genera-
tive models,” IEEE Transactions on Dependable and Secure Computing,
2021.

[32] Z. Ziegler, Y. Deng, and A. Rush, “Neural Linguistic Steganography,” in
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, 2019, pp. 1210–1215.

[33] G. Kaptchuk, T. M. Jois, M. Green, and A. D. Rubin, “Meteor:
Cryptographically Secure Steganography for Realistic Distributions,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. Virtual Event Republic of Korea: ACM,
Nov. 2021, pp. 1529–1548.

[34] S. Zhang, Z. Yang, J. Yang, and Y. Huang, “Provably Secure Gen-
erative Linguistic Steganography,” in Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021. Online: Association
for Computational Linguistics, 2021, pp. 3046–3055.

[35] G. J. Simmons, “The prisoners’ problem and the subliminal channel,”
in Advances in Cryptology. Springer, 1984, pp. 51–67.

[36] A. Kerckhoffs, “La cryptographic militaire,” Journal des sciences mili-
taires, pp. 5–38, 1883.

[37] S. Katzenbeisser and F. A. P. Petitcolas, “Defining security in
steganographic systems,” in Security and Watermarking of Multimedia
Contents IV, E. J. Delp III and P. W. Wong, Eds., San Jose,

http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
https://doi.org/10.1007/978-3-030-01267-0_40
https://doi.org/10.1109/TNSE.2021.3139671
https://doi.org/10.1109/TPAMI.2019.2901877
http://eprint.iacr.org/2003/156
https://doi.org/10.1007/978-3-030-11389-6_5

CA, Apr. 2002, pp. 50–56. [Online]. Available: http://proceedings.
spiedigitallibrary.org/proceeding.aspx?articleid=877726

[38] L. v. Ahn and N. J. Hopper, “Public-key steganography,” in Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2004, pp. 323–341.

[39] M. Backes and C. Cachin, “Public-Key Steganography with Active
Attacks,” in Theory of Cryptography, ser. Lecture Notes in Computer
Science, J. Kilian, Ed. Berlin, Heidelberg: Springer, 2005, pp. 210–226.

[40] R. Barron, B. Chen, and G. Wornell, “The duality between information
embedding and source coding with side information and some appli-
cations,” IEEE Transactions on Information Theory, vol. 49, no. 5, pp.
1159–1180, 2003.

[41] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in
Proceedings of the 2th International Conference on Learning Represen-
tations, Banff, AB, Canada, 2014.

[42] D. P. Kingma, M. Welling et al., “An introduction to variational
autoencoders,” Foundations and Trends® in Machine Learning, vol. 12,
no. 4, pp. 307–392, 2019.

[43] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,”
in Advances in Neural Information Processing Systems, vol. 27. Cam-
bridge, MA, USA: Curran Associates, Inc., 2014, pp. 2672–2680.

[44] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-To-
Image Translation Using Cycle-Consistent Adversarial Networks,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2223–2232.

[45] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language Models are Few-Shot Learners,” in Advances
in Neural Information Processing Systems, vol. 33. Online: Curran
Associates, Inc., 2020, pp. 1877–1901.

[46] O. Patashnik, Z. Wu, E. Shechtman, D. Cohen-Or, and D. Lischin-
ski, “StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision. Montreal, QC, Canada: IEEE, 2021, pp. 2085–2094.

[47] A. Radford and K. Narasimhan, “Improving Language Understanding
by Generative Pre-Training,” 2018.

[48] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language Models are Unsupervised Multitask Learners,” p. 24, 2019.

[49] A. van den Oord, N. Kalchbrenner, L. Espeholt, k. kavukcuoglu,
O. Vinyals, and A. Graves, “Conditional Image Generation with Pixel-
CNN Decoders,” in Advances in Neural Information Processing Systems,
vol. 29. Curran Associates, Inc., 2016.

[50] L. Ruthotto and E. Haber, “An Introduction to Deep Generative Model-
ing,” arXiv:2103.05180 [cs], Apr. 2021.

[51] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,
and I. Sutskever, “Zero-Shot Text-to-Image Generation,” in Proceedings
of the 38th International Conference on Machine Learning. PMLR,
Jul. 2021, pp. 8821–8831.

[52] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hi-
erarchical Text-Conditional Image Generation with CLIP Latents,”
arXiv:2204.06125 [cs], Apr. 2022.

[53] Gartner, “Top strategic technology trends for 2022,” Gartner, 2022.
[54] D. A. Huffman, “A Method for the Construction of Minimum-

Redundancy Codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–
1101, Sep. 1952.

[55] Z. Yang, X. Guo, Z. Chen, Y. Huang, and Y. Zhang, “Rnn-stega:
Linguistic steganography based on recurrent neural networks,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 5,
pp. 1280–1295, 2019. [Online]. Available: https://doi.org/10.1109/TIFS.
2018.2871746

[56] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” vol. abs/1910.01108,
2019.

[57] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov,
“Transformer-XL: Attentive Language Models beyond a Fixed-Length
Context,” in Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics. Florence, Italy: Association for
Computational Linguistics, 2019, pp. 2978–2988.

[58] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever,
“Generative Pretraining From Pixels,” in Proceedings of the 37th Inter-

national Conference on Machine Learning. PMLR, Nov. 2020, pp.
1691–1703.

[59] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgiannakis,
R. Clark, and R. A. Saurous, “Tacotron: Towards End-to-End Speech
Synthesis,” in Interspeech 2017. ISCA, Aug. 2017, pp. 4006–4010.

[60] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande,
E. Lockhart, F. Stimberg, A. Oord, S. Dieleman, and K. Kavukcuoglu,
“Efficient Neural Audio Synthesis,” in Proceedings of the 35th Interna-
tional Conference on Machine Learning. PMLR, Jul. 2018, pp. 2410–
2419.

[61] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. Rush, “Transformers: State-of-the-Art
Natural Language Processing,” in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demon-
strations. Online: Association for Computational Linguistics, 2020, pp.
38–45.

[62] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The Curious
Case of Neural Text Degeneration,” in 8th International Conference on
Learning Representations. Addis Ababa, Ethiopia,: OpenReview.net,
Apr. 2020.

[63] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies. Portland, Oregon, USA: Association
for Computational Linguistics, June 2011, pp. 142–150. [Online].
Available: http://www.aclweb.org/anthology/P11-1015

[64] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes
in the Wild,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 3730–3738.

[65] Q. Lhoest, A. Villanova del Moral, Y. Jernite, A. Thakur, P. von Platen,
S. Patil, J. Chaumond, M. Drame, J. Plu, L. Tunstall, J. Davison,
M. Šaško, G. Chhablani, B. Malik, S. Brandeis, T. Le Scao, V. Sanh,
C. Xu, N. Patry, A. McMillan-Major, P. Schmid, S. Gugger, C. Delangue,
T. Matussière, L. Debut, S. Bekman, P. Cistac, T. Goehringer, V. Mustar,
F. Lagunas, A. Rush, and T. Wolf, “Datasets: A community library for
natural language processing,” in Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing: System
Demonstrations. Online and Punta Cana, Dominican Republic:
Association for Computational Linguistics, Nov. 2021, pp. 175–184.
[Online]. Available: https://aclanthology.org/2021.emnlp-demo.21

[66] Z. Yang, Y. Huang, and Y.-J. Zhang, “A fast and efficient text steganaly-
sis method,” IEEE Signal Processing Letters, vol. 26, no. 4, pp. 627–631,
2019.

[67] Y. Niu, J. Wen, P. Zhong, and Y. Xue, “A Hybrid R-BILSTM-C Neural
Network Based Text Steganalysis,” IEEE Signal Processing Letters,
vol. 26, no. 12, pp. 1907–1911, Dec. 2019.

[68] H. Yang, Y. Bao, Z. Yang, S. Liu, Y. Huang, and S. Jiao, “Linguistic
Steganalysis via Densely Connected LSTM with Feature Pyramid,” in
Proceedings of the 2020 ACM Workshop on Information Hiding and
Multimedia Security. Denver CO USA: ACM, Jun. 2020, pp. 5–10.

[69] W. Luo, H. Li, Q. Yan, R. Yang, and J. Huang, “Improved audio stegan-
alytic feature and its applications in audio forensics,” ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMM),
vol. 14, no. 2, pp. 1–14, 2018.

[70] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” in Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, 2017, pp.
6626–6637. [Online]. Available: https://proceedings.neurips.cc/paper/
2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html

[71] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual
evaluation of speech quality (pesq)-a new method for speech quality
assessment of telephone networks and codecs,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP
2001, 7-11 May, 2001, Salt Palace Convention Center, Salt Lake
City, Utah, USA, Proceedings, 2001, pp. 749–752. [Online]. Available:
https://doi.org/10.1109/ICASSP.2001.941023

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=877726
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=877726
https://doi.org/10.1109/TIFS.2018.2871746
https://doi.org/10.1109/TIFS.2018.2871746
http://www.aclweb.org/anthology/P11-1015
https://aclanthology.org/2021.emnlp-demo.21
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://doi.org/10.1109/ICASSP.2001.941023

APPENDIX

A. Linear Complexity Algorithm for Creating a Huffman Tree

A linear time complexity algorithm for creating a Huffman
tree is shown in Algorithm 4.

Algorithm 4: create tree
(
P(t)

)
: create a Huffman

tree according to P(t) in O (|V |) time

Input: Distribution P(t)

Output: Root Node of the Created Huffman Tree root
indices,probs← P(t)

nodes ← []
n← probs.size()
for i← 0 to n− 1 do

node← Node(indices[i], probs[i], ∅, ∅)
nodes.append(node)

q1 ← queue(nodes)
q2 ← queue()
subroutine GetMin()

nonlocal q1, q2
if q1.size() > 0 and q2.size() > 0 and

q1.front().prob < q2.front().prob then
item← q1.front()
q1.pop front()

else if q1.size() = 0 then
item← q2.front()
q2.pop front()

else if q2.size() = 0 then
item← q1.front()
q1.pop front()

else
item← q2.front()
q2.pop front()

return item

while q1.size() + q2.size() > 1 do
left← GetMin()
right← GetMin()
prob← left .prob + right .prob
q2.push back(Node(∅,prob, left, right)

if q2.size() > 0 then
root← q2.front()

else
root← q1.front()

return root

B. Examples of Output of Discop

Table IV gives an example of employing random sampling
and Discop with GPT-2 [48] to continue writing 200 tokens
under p = 0.95 truncation. As can be seen, the semantics of
texts are both relevant to the given context.

Fig. 7 gives examples of employing Image GPT [58] to
perform image completion under p = 0.95 truncation. The
upper half of each of them is obtained by down-sampling and

(a) Random Sampling

(b) Discop

Fig. 7: Samples of employing Image GPT to perform image
completion under p = 0.95 truncation.

cropping selected samples in the CelebA dataset, and we use
random sampling and Discop to complete it. It can be seen
that the quality of the image generated by random sampling
is similar to that of the image generated by Discop. In order
to generate a large number of images quickly, we choose the
Image GPT model with the generated image size of 32 × 32
as an instance. If a larger model is chosen, or the ability of
generative models becomes more powerful in the future, the
quality of the image will be improved.

For the text-to-speech task, we have put some audio clips
here6. Both the audio clips generated by random sampling and
Discop sound clear and normal.

C. Steganalysis Experiments

Although we have proved the security of the steganography
method based on “distribution copies” in Sec. III-A, we still
try to distinguish between covers (generated by random sam-
pling) and stegos (generated by steganographic sampling) with
steganalyzers for the sake of the integrity of this work. Existing
steganalysis methods generally 1) generate many covers and
stegos under the same settings as the communication parties
and then train a binary classifier; 2) use the trained classifier
to predict whether a sample is a stego or a cover. Notably,
the generated covers and stegos are in pairs, with the same
contexts (for the text generation and image completion tasks)
or with the same texts (for the text-to-speech task).

6https://github.com/comydream/Discop/tree/main/audio samples

https://github.com/comydream/Discop/tree/main/audio_samples

TABLE IV: An example of employing GPT-2 to perform text
generation under p = 0.95 truncation.

Context:
I remember this film, it was the first film I had watched at the cinema.

Random Sampling:
There was a last minute switch because I had watched it a decade
ago in the City School balcony of a big theatre where the writers
were also prominent. So I just watched it, cut it, then cut it. When I
was about 15 years old, I went to the Millie Murphy director’s ticket
and watched The Girl who Would Get Away With Murder and then I
watched an Ode to love. It’s just magic. Once we got into that period
with Baby Driver and Gravity and Rushmore, the characters played
what I’d always dreamed. You know, they’d come up with creative,
futuristic, ridiculously stupid songs from here and then the originals
would come out, the normal birds would just sit there and wait for a
substitution in the end credits to get on the schedule. And I just loved
that whole process of watching this wonderful, there is so much greater
potential here and it’s been so exciting to continue to put in so much
work and still succeed with these great movies in the works

Discop:
I was very nervous, at the time. I was 22, and the director was actually
at a birthday party in Paris and just saying the doors were closed. But
I put on a large black motorcycle, got my album saved and drove on,
doing videos about history and the films. So I was really excited. And
I found that in this movie, we were at a concert in London. And that
concert was where every song and every act was at the movie playing
the music that could be heard and the message was, “By God, there’s
people. But time has passed, and we’re here, maybe from another
world. Let’s see how things can go.” And at the end of the movie I
said, “I hope the thing happened a bit, because there’s no way you
can change what you know. You know? Something has happened. Just
let it happen. Let it happen.” And at the end, I say to myself, “Hey,
maybe we can change

In our steganalysis experiments, we generate more samples
to better train steganalyzers, and all covers and stegos are
generated with the truncation parameter of p = 0.95. Except
for the number of generated samples and the truncation
parameter p, the settings are the same as described in Sec. V-A.

a) Text generation: We generate 10,000 covers and
10,000 stegos. We employ three linguistic steganalyzers,
including FCN [66], R-BiLSTM-C [67], and BiLSTM-
Dense [68].

b) Image Completion: We generate 10,000 covers and
10,000 stegos. We employ a widely used image steganalyzer:
Steganalysis Residual Network (SRNet) [21].

c) Text-to-speech: We generate 1000 covers and 1000
stegos. We employ an audio steganalyzer: Combined Time and
Frequency (CTaF) [69].

The detection error rate PE of the testing set is used
to evaluate the security of steganographic methods. For all
steganalysis experiments, the generated datasets are divided
into the training set, validation set, and testing set (3:1:1).

The experimental results are shown in Table V. The de-
tection error rates against Discop deployed on three tasks are
all close to 50%. The results show that these classifiers are
challenging to distinguish between the covers and the stegos,
which validates the security of Discop.

TABLE V: Steganalysis results for Discop.

Task Steganalyzer PE

Text Generation
FCN [66] 50.10%

R-BiLSTM-C [67] 50.45%
BiLSTM-Dense [68] 49.95%

Image Completion SRNet [21] 50.05%

Text-to-Speech CTaF [69] 49.50%

D. Generation Quality Evaluation Experiments
Discop makes the stego distribution strictly equal to the

cover distribution. It means that the quality of the stegano-
graphic generations is similar to that of normal generations.
To verify this, we conduct quality evaluation experiments on
the covers and stegos.

1) Text generation: We denote the cover and stego text
datasets generated in Appendix C as Tc and Ts. For each
dataset, we can obtain the mean and standard deviation of
the perplexity (ppl) values of the texts, as shown in Table VI.
It can be seen that they are close, indicating that the quality
of the texts generated by steganographic sampling is similar
to that generated by random sampling.

2) Image completion: We denote the cover and stego image
datasets generated in Appendix C as Ic0 and Is, and addi-
tionally generated 10,000 covers with the same contexts as
dataset Ic1. We use the Fréchet Inception Distance (FID) [70]
to measure the distance between Ic0 and Is (a cover dataset
and a stego dataset) and the distance between Ic0 and Ic1 (two
cover datasets, for reference), as shown in Table VII. It can
be seen that they are close, indicating that the quality of the
images generated by steganographic sampling is similar to that
generated by random sampling.

3) Text-to-speech: We denote the cover and stego speech
datasets generated in Appendix C as Ac0 and As, and addi-
tionally generated 1000 covers with the same texts as dataset
Ac1. We employ the Perceptual Evaluation of Speech Quality
(PESQ) [71], which measures the similarity between two audio
clips. For each pair of audio clips with the same text from two
datasets, we can calculate the PESQ between them. The mean
and standard deviation of the PESQ values between Ac0 and
As (a cover dataset and a stego dataset) and that between Ac0

and Ac1 (two cover datasets, for reference) are presented in
Table VIII. It can be seen that they are close, meaning that the
quality of the speeches generated by steganographic sampling
is similar to that generated by random sampling.

TABLE VI: Quality evaluation of generated texts.

Dataset mean(ppl) std(ppl)

Tc 42.858 21.512
Ts 42.229 22.770

E. Toy Examples of Steganographic Distortions
We provide toy examples in Fig. 8 to illustrate the distor-

tions introduced by the AC-based methods and ADG, as well
as how Discop can preserve the distribution.

TABLE VII: Quality evaluation of generated images.

Datasets FID

Ic0 Is 3.858
Ic0 Ic1 3.843

TABLE VIII: Quality evaluation of generated audios.

Datasets mean(PESQ) std(PESQ)

Ac0 As 3.354 0.122
Ac0 Ac1 3.356 0.128

0 0.35 0.93

a b c d e f
10.61 0.84 0.97

0 0.38 0.96
a b c d e

10.64 0.87

(a) By “cutoff-rescale-round-remove-add” in the code implementations, the AC-based methods may remove the tokens with the lowest
probabilities and add the subtracted probabilities to the token with the highest probability to ensure that the probabilities sum to 1. In this
example, Meteor removes the token “f” with a probability of 0.03 and adds that probability to the token “a”, whose probability becomes
0.38 as a result.

a b c

a b c

0 0.45 0.75 1

0 0.50 0.77 1

(b) ADG divides all tokens into 2r (r ∈ N) groups and adjusts the probabilities sum of each group to 1/2r . In this example, the number
of groups is 2, and the probabilities sum of each group needs to be adjusted to 1/2.

a b c
0 0.10 0.60 10.30

d

a b c
0 0.10 0.60 10.30

d
0.20 0.70

rotate

(c) Discop creates “distribution copies” by rotation and then performs a random sampling from one of these copies. Since the distribution
of all “distribution copies” is identical, Discop does not modify the distribution.

Fig. 8: The distortions introduced by ADG and the AC-based methods and how Discop can maintain the distribution.

	Introduction
	Background and Related Work
	Steganography System
	Definition of Steganographic Security
	Classical Provably Secure Steganographic Construction
	Rejection sampling-based methods
	Arithmetic coding-based method

	Deep Generative Models and Their Feasibility
	Efficient Attempts to Provably Secure Steganography
	AC-based methods
	Grouping-based method

	Discop Methodology
	Steganography Method Based on ``Distribution Copies''
	Improving the Embedding Rate by Recursion

	Deployments
	Text Generation
	Image Completion
	Text-to-Speech

	Experiments and Evaluation
	Setup
	Text generation
	Image completion
	Text-to-speech (TTS)

	Metrics
	Security
	Utilization
	Time

	Results and Analysis
	Comparison to Baselines
	Evaluation of additional time consumption

	Discussion
	Out-of-Band Cost
	Limitations

	Conclusion
	References
	Appendix
	Linear Complexity Algorithm for Creating a Huffman Tree
	Examples of Output of Discop
	Steganalysis Experiments
	Generation Quality Evaluation Experiments
	Text generation
	Image completion
	Text-to-speech

	Toy Examples of Steganographic Distortions

