
Discop: Provably Secure Steganography in Practice
Based on “Distribution Copies”

Jinyang Ding* Kejiang Chen* Yaofei Wang+ Na Zhao* Weiming Zhang* Nenghai Yu*

*University of Science and Technology of China +Hefei University of Technology

2023 IEEE Symposium on Security and Privacy

source@mail.ustc.edu.cn {chenkj, zhangwm}@ustc.edu.cn

Censorship is everywhere!

Combat Extreme Censorship

!"#"$%&

Encryption-based tools

Can be easily identified and blocked!

Tunnel-based covert channels
Protozoa [CCS ’20], Balboa [USENIX Sec ’21]

No guarantee of sustainability!

3Discop

Ideal Technique: Steganography
Censors can block the encrypted traffic where they don’t have a suitable trapdoor.

Steganography System
p Steganography: Prisoners’ Problem [Simmons. CRYPTO ’83]
• Embed a secret message in a mundane-appearing object
• Cover: an object without a secret message embedded
• Stego: an object with a secret message embedded

p Current mainstream steganography methods
• Steganography by cover modification, e.g., LSB replacement, adaptive steganography
• Limitation: their security cannot be formally proved!

p A more advanced pursuit: Provably Secure Steganography (PSS)
4Discop

Alice BobEve

Steganographic Security
p Provably secure steganography (PSS)

5Discop

C.E. Shannon

von Ahn and Hopper. Public-Key Steganography. EUROCRYPT ’04Shannon. Communication Theory of Secrecy Systems. BSTJ ’49

Hopper et al. Provably Secure Steganography. CRYPTO ’02

Manuel Blum

N.J. Hopper Luis von Ahn

Rejection sampling-based PSS

A necessary condition: sampleable distribution
Challenging to meet at that time ⇒ For a long time, cannot be put into practice

Steganographic Security
p Provably secure steganography (PSS)
• Put steganography on a solid theoretical foundation
• Theoretically ensure undetectability

p Information-theoretic security [Cachin. IH ’98]
• KL divergence between the cover and stego distributions

𝐷!" 𝑃# ∥ 𝑃$ =%
𝐱∈𝒞

𝑃# 𝐱 log
𝑃# 𝐱
𝑃$ 𝐱

p Computational security [Hopper et al. CRYPTO ’02] [Katzenbeisser and Petitcolas. SWMC ’02]
• The adversary is playing a game of distinguishing covers and stegos
• Secure if all PPT adversaries have a negligible advantage in the game

|Pr[𝒜𝒟
Encode𝒟(*,⋅,⋅) = 1] − Pr[𝒜𝒟

𝒪𝒟(⋅,⋅) = 1]| < negl(𝜆)

6Discop

AI Generative Models

7Discop

ChatGPT reaches 100 million
users two months after launch.

Stable Diffusion created millions
of images in the first two months.

Gartner’s report predicted that
generative AI will account for 10%
of all data produced by 2025.

ChatGPT

The popularity of AI generative models provides a brand new camouflage environment for PSS!

In 2018, first proposed to use AI generative models to conduct PSS

Yang et al. Provably Secure Generative Steganography Based on Autoregressive Model. IWDW ’18

Existing PSS Methods
p Thanks to AI generative models, PSS is moving towards practicality

8Discop

Category Authors Publication
Venue Abbr. Message Expression

Method

Rejection sampling-based

Hopper et al. CRYPTO ’02

RejSamp 𝑓(stego)von Ahn and Hopper EUROCRYPT ’04

Backes and Cachin TCC ’05

Arithmetic coding-based

Le IACR ePrint ’03

AC
Token indexes

Yang et al. IWDW ’18

Ziegler et al. EMNLP ’19

Chen et al. TDSC ’21

Kaptchuk et al. CCS ’21 Meteor

Grouping-based Zhang et al. ACL Findings ’21 ADG Group indexes

Theoretical
w/o AI

Practical
w/ AI

Taking Text Generation as an Example
p Auto-regressive (AR) model (e.g. GPT-2/3/4)
• Generates text in a token-by-token fashion
• Trained to predict the probability distribution of the next token Pr[𝑥/ ∣ 𝑥0/]
• Iteratively repeats prediction and random sampling

9Discop

Token Probability

name 0.439

friend 0.350

dear 0.211

Context

Hello, my

Context

Hello, my dear

Token Probability

friend 0.666

audience 0.233

reader 0.101

Random
Sampling

Random
SamplingAppend

Predict

Predict

dear

audience

Taking Text Generation as an Example
p Random sampling
• Assign an interval in [0,1) to each token according to Pr[𝑥/ ∣ 𝑥0/]
• Consume a pseudo-random number 𝑟(/) ∼ 𝑈[0,1) from the PRNG
• Select the token corresponding to the interval 𝑟(/) falls into as the next token

10Discop

Token Probability Interval

name 0.439 [0.000, 0.439)

friend 0.350 [0.439, 0.789)

dear 0.211 [0.789, 1.000)

The seed is the number (or vector) used to initialize the PRNG

Context

Seed

Generative Model

Pseudo-random Number
Generator (PRNG)

Next Token’s
Distribution

Pseudo-random
Number (PRN)

Sampler

Next TokenContext.append Next Token

𝑟(")

Taking Text Generation as an Example
p How to achieve PSS in a generation process?
p PSS sampling (sample under the control of the secret message)
• Indistinguishable from normal sampling (random sampling)
• Reversible: the receiver can recover the secret message from the sampled token

11Discop

Control
Context

Seed

Generative Model

Pseudo-random Number
Generator (PRNG)

Next Token’s
Distribution

Pseudo-random
Number (PRN)

Sampler

Next TokenContext.append Next Token

𝑟(")

Existing PSS Methods
p We analyze their problems in practice

12Discop

Category Authors Publication
Venue Abbr. Message Expression

Method
Problems
in Practice

Rejection sampling-based

Hopper et al. CRYPTO ’02

RejSamp 𝑓(stego) Inefficientvon Ahn and Hopper EUROCRYPT ’04

Backes and Cachin TCC ’05

Arithmetic coding-based

Le IACR ePrint ’03

AC
Token indexes Fail to achieve

the expected
security

Yang et al. IWDW ’18

Ziegler et al. EMNLP ’19

Chen et al. TDSC ’21

Kaptchuk et al. CCS ’21 Meteor

Grouping-based Zhang et al. ACL Findings ’21 ADG Group indexes

Our Basic Construction
p Our insight
• The interval assignment scheme is not unique
• All schemes share identical distribution, hence called “distribution copies”

p Our idea
• If we want to embed 𝑛 bits of information, we can construct 21 “distribution copies” and

use the copy index to express information!

13Discop

Token Probability

a 0.4

b 0.6

0 0.4 1
a b index = 0

0 0.6 1
ab index = 1

copy 0

copy 1

Our Basic Construction
p How to construct multiple “distribution copies”? Rotation!
p A running example
• Take “a-b-c-d” as the initial interval assignment scheme (i.e., copy 0)
• If we want to embed 1 bit of information, we need to construct 22 = 𝟐 copies
• The corresponding rotation step size is 1/2 = 𝟎. 𝟓
• Rotate copy 0 to the left by 0.5 to obtain copy 1
• Consume a pseudo-random number 𝑟(/) = 0.2 from PRNG
• To embed message 𝑚 ∈ {0, 1}, sample from copy 𝑚

14Discop

Token a b c d
Probability 0.1 0.2 0.3 0.4

𝑚 = 0

𝑚 = 1

𝑥/ = b

𝑥/ = d

Our Basic Construction
p From the receiver’s perspective

• Bob can synchronize all states with Alice, so he can recover the message from the received token

15Discop

Context

Seed

Generative Model

Pseudo-random Number
Generator (PRNG)

Next Token’s
Distribution

Pseudo-random
Number (PRN)

Sampler

Next TokenContext.append Next Token

𝑚 = 0

𝑚 = 1

𝑥/ = b

𝑥/ = d

Our Basic Construction
p Condition for unique decoding & Embedding capacity
• If we want to embed 1 bit, we need to construct 2 copies, so the rotation step size is 0.5

• If we want to embed 2 bits, we need to construct 4 copies, so the rotation step size is 0.25
• The parts covered by the gray masks indicate the disputed ranges (covered by grey)

• Ave(Embedding rate) = The distribution’s minimum entropy Its theoretical limit = The distribution’s entropy

16Discop

𝑟(") = 0.58 𝑟(") = 0.52

Rollback

Fig. 2 Fig. 3

Fig. 1

Our Improved Construction: Discop
p How to improve the embedding rate?
p A toy example
• Basic construction: only 1 bit
• Improved construction: 1.5 bits (50% 1 bit, 50% 2 bits)

17Discop

Token a b c
Probability 0.50 0.25 0.25

0.50 0.50

0.25
(0.50)

0.25
(0.50)

[0, 1)

1.00
root

[0, 1)
a

b c
[0.5, 0.75) [0.75, 1)

[0.5, 1)

Basic construction: 1 bit Basic construction: 2 bits Improved construction: 1.5 bits (average)

Our Improved Construction: Discop
p Our idea: two steps
• Construct a Huffman tree by recursive grouping
• Embed the message bits in child node selections

p A running example

18Discop

0.439

0.200 0.239

0.561

0.261 0.300

0.145 0.155

0.050 0.105

[0.200, 0.439)

friend

cell mom

[0.000, 1.000)

[0.439, 0.700) [0.700, 1.000)

[0.700, 0.845)
[0.845, 1.000)

[0.845, 0.895) [0.895, 1.000)

0.439

0

1

name
0 0.4390.200

0.2033 0.4228

0 0.239

littlegod
0.0393 0.1588

0.114

0.3123 0.8123

Context = “Hello, my”

Next token = “god”

Actual embedded message = [1, 0]

1.000

0.125 0.136

new
[0.439, 0.564) [0.564, 0.700)

dearlittle
[0.314, 0.439)

0.1250.114

god
[0.200, 0.314)

name
[0.000, 0.200)

[0.439, 1.000)

root

 and fall into the same interval,
So the bit cannot be embedded.

Message = [..., 1, 0, 1, ...]

[0.000, 0.439)

Huffman Tree Construction Message Embedding Process

0.2

0.145
0.136

0.125 0.125
0.114

0.105

0.05

name friend dear little new god mom cell
0

0.05

0.1

0.15

0.2

0.25
Context = “Hello, my”

C
on

di
tio

na
l P

ro
ba

bi
lit

y

Token

Example of probability distribution⏶

Example of Discop’s embedding algorithm⏵

The multi-variate distribution

Multiple bi-variate distributions

decompose

Proof of Security
p Intuitive proof of security
• Random sampling from one of the “distribution copies”
• The distribution of all copies is identical
• The steganographic behavior DOES NOT damage the original distribution

p More rigorous proof of security
• Preserve the probability density of arbitrary pseudo-random number
• For more details, please refer to our paper

19Discop

𝑚 = 0

𝑚 = 1

𝑥/ = b

𝑥/ = d

Deployments
p Deploy Discop on three typical generation tasks

20Discop

Message
Attack at dawn!

a tree was 20 years
ago. The second
best time is now.

Attack at dawn!

The best time to plant

a tree was 20 years
ago. The second
best time is now.

The best time to plant
Stego-text

a tree was 20 years
ago. The second
best time is now.

Initial Context
The best time to plant

Discop Embedding

Generative Model

Discop Extraction

Generative Model

Initial Context

ConcatenationStego-text

Sender Receivcer

Message

Initial Context

Message
Attack at dawn!

Stego-image
Message

Attack at dawn!

Initial Context

Stego-image

Concatenation

Discop Embedding

Generative Model

Discop Extraction

Generative Model

Sender Receivcer

Message
Attack at dawn!

Message
Attack at dawn!

Text
This is a text.

Text
This is a text.

Stego-speech

Speech
Recognition

Discop Embedding

Generative Model

Discop Extraction

Generative Model

Sender Receivcer

Text Generation
GPT-2

Image Completion
Image GPT

Text-to-speech
WaveRNN

Evaluations
p Setup
• Top-𝒑 sampling: 𝑝 = 0.80, 0.92, 0.95, 0.98, 1.00
• Text: 100 texts from IMDb, the first 3 sentences as the context, generate 100 tokens
• Image: 100 images from CelebA, the upper part as the context, complete the image (512 pixels)
• Speech: 100 texts from IMDb, synthesis the speech of the first sentence
• Baselines: Meteor and ADG (only on the text generation task)
• Hardware: CPU 3.00GHz, 128GB RAM, and NVIDIA RTX 3090

p Evaluation axes
• Security: Ave KLD, Max KLD (bits / token)
• Time Efficiency: Ave Time (seconds / bit)
• Capacity Efficiency: Utilization

21Discop

Embedding capacity (total length of the embedded message)
Embedding capacity’s theoretical limit (entropy sum over all time steps)

Utilization =

Evaluations

22Discop

Comparison to Meteor and ADG (using GPT-2)

Task/Model p
Random Sampling

Time (seconds)
Discop

Time (seconds) Ratio

Text Generation
GPT-2

0.80 91.21 104.30 1.14
0.92 90.89 104.36 1.15
0.95 92.39 107.07 1.16
0.98 95.20 115.13 1.21
1.00 174.09 362.63 2.08

Image Completion
Image GPT

0.80 739.82 741.35 1.00
0.92 740.57 750.96 1.01
0.95 742.79 832.52 1.12
0.98 738.57 763.67 1.03
1.00 752.24 759.24 1.01

Text-to-speech
WaveRNN

0.80 2500.56 2679.60 1.07
0.92 2522.93 2599.81 1.03
0.95 2520.88 2649.25 1.05
0.98 2537.15 2700.39 1.06
1.00 2744.50 3582.87 1.31

Additional time consumption

Evaluation axes
Security: Ave KLD, Max KLD (bits/token)
Time Efficiency: Ave Time (seconds/bit)
Capacity Efficiency: Utilization

Discop: Provably Secure Steganography in Practice
Based on “Distribution Copies”

Jinyang Ding* Kejiang Chen* Yaofei Wang+ Na Zhao* Weiming Zhang* Nenghai Yu*

*University of Science and Technology of China +Hefei University of Technology

source@mail.ustc.edu.cn {chenkj, zhangwm}@ustc.edu.cn

THANK YOU

• Analyzed the practical issues of existing PSS methods

• Introduced a novel PSS method based on “distribution copies”

• Improved the embedding capacity to ~0.95 of its theoretical limit

• Conducted deployments, benchmarking and comparison

Summary

